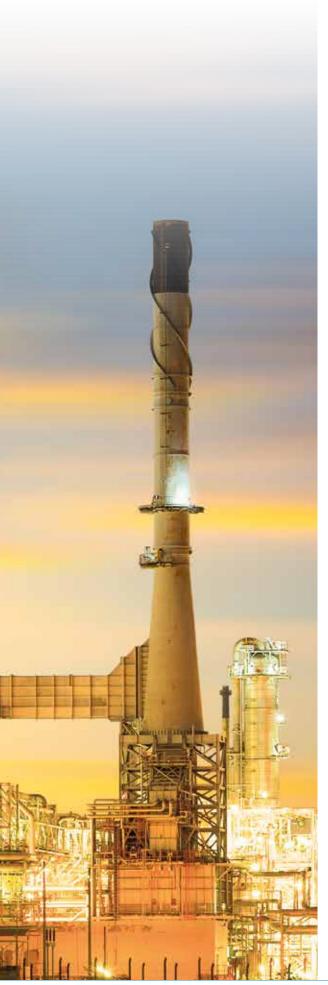


Gas Detection

GAS BOOK


Find Quality Products Online at:

www.GlobalTestSupply.com

Find Quality Products Online at:

www.GlobalTestSupply.com

Introduction

A diverse variety of applications and processes increasingly involve the use and manufacture of highly dangerous substances, particularly flammable, toxic and Oxygen gases. Inevitably, occasional escapes of gas occur, which create a potential hazard to the industrial plants, their employees and people living nearby. Worldwide incidents, involving asphyxiation, explosions and loss of life, are a constant reminder of this problem.

In most industries, one of the key parts of any safety plan for reducing risks to personnel and plant is the use of early warning devices such as gas detectors. These can help to provide more time in which to take remedial or protective action. They can also be used as part of a total, integrated monitoring and safety system which may include various other safety aspects including fire detection and emergency process shutdown.

Gas detection can be divided into two overriding categories; fixed gas detection and portable gas detection. As the name might suggest, fixed gas detection represents a static type of detection system for flammable, toxic and Oxygen gas hazards and is designed to monitor processes, and protect plant and assets as well as personnel on-site. Portable gas detection is designed specifically to protect personnel from the threat of flammable, toxic or Oxygen gas hazards and is typically a small device worn by an operator to monitor the breathing zone.

Many sites incorporate a mix of both fixed and portable gas detection as part of their safety philosophy, but the suitability of which type to use will depend on several factors, including how often the area is accessed by personnel.

www.honeywellsafety.com

Find Quality Products Online at:

www.GlobalTestSupply.com

What is Gas?

The name gas comes from the word chaos. Gas is a swarm of molecules moving randomly and chaotically, constantly colliding with each other and anything else around them. Gases fill any available volume and due to the very high speed at which they move will mix rapidly into any atmosphere in which they are released.

> Vehicle engines combust fuel and Oxygen and produce exhaust gases that include Nitrogen Oxides, Carbon onoxide and Carbon Dioxide.

Different gases are all around us in everyday life. The air we breathe is made up of several different gases including Oxygen and Nitrogen.

Air Composition

The table gives the sea-level composition of air (in percent by volume at the temperature of 15° C and the pressure of 101325 Pa).

NAME	SYMBOL	PERCENT BY VOLUME
NITROGEN	N2	78.084%
OXYGEN	O2	20.9476%
ARGON	Ar	0.934%
CARBON DIOXIDE	CO2	0.0314%
NEON	Ne	0.001818%
METHANE	CH4	0.0002%
HELIUM	He	0.000524%
KRYPTON	Kr	0.000114%
HYDROGEN	H2	0.00005%
XENON	Xe	0.0000087%

4

www.GlobalTestSupply.com

Gases can be lighter, heavier or about the same density as air. Gases can have an odour or be odourless. Gases can have colour or be colourless. If you can't see it, smell it or touch it, it doesn't mean that it is not there.

Gas Hazards

There are three main types of gas hazard:

Toxic

Risk of Poisoning

e.g. Carbon Monoxide, Hydrogen, Chlorine

Asphyxiant

Risk of suffocation

e.g. Oxygen deficiency. Oxygen can beconsumed or displaced by another gas

Flammable

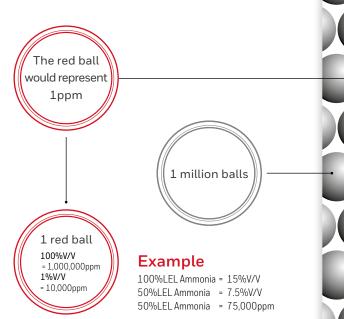
Risk of fire and/or explosion

e.g. Methane, Butane, Propane

Natural Gas (Methane) is used in many homes for heating and cooking.

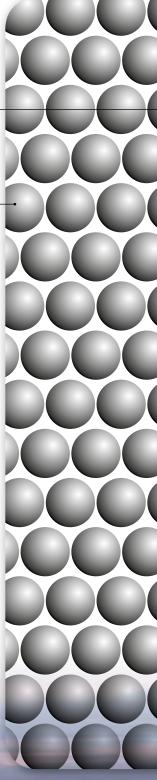
www.GlobalTestSupply.com

sales@GlobalTestSupply.com

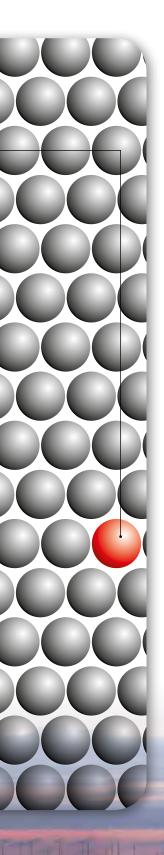

Find Quality Products Online at:

Toxic Gas Hazards

Some gases are poisonous and can be dangerous to life at very low concentrations. Some toxic gases have strong smells like the distinctive 'rotten eggs' smell of Hydrogen Sulphide (H₂S). The measurements most often used for the concentration of toxic gases are parts per million (ppm) and parts per billion (ppb). For example 1ppm would be equivalent to a room filled with a total of 1 million balls and 1 of those balls being red.


More people die from toxic gas exposure than from explosions caused by the ignition of flammable gas. (It should be noted that there is a large group of gases which are both combustible and toxic, so that even detectors of toxic gases sometimes have to carry hazardous area approval). The main reason for treating flammable and toxic gases separately is that the hazards and regulations involved and the types of sensor required are different.

With toxic substances, apart from the obvious environmental problems, the main concern is the effect on workers of exposure to even very low concentrations, which could be inhaled, ingested, or absorbed through the skin. Since adverse effects can often result from additive,


long-term exposure, it is important not only to measure the concentration of gas, but also the total time of exposure. There are even some known cases of synergism, where substances can interact and produce a far worse effect when combined than the separate effect of each on its own.

Concern about concentrations of toxic substances in the workplace focus on both organic and inorganic compounds, including the effects they could have on the health and safety of employees, the possible contamination of a manufactured end-product (or equipment used in its manufacture) and also the subsequent disruption of normal working activities.

Find Quality Products Online at:

www.GlobalTestSupply.com

Workplace Exposure Limits

The term 'workplace exposure limits' or 'occupational hazard monitoring' is generally used to cover the area of industrial health monitoring associated with the exposure of employees to hazardous conditions of gases, dust, noise etc. In other words, the aim is to ensure that levels in the workplace are below the statutory limits.

This subject covers both area surveys (profiling of potential exposures) and personal monitoring, where instruments are worn by a worker and sampling is carried out as near to the breathing zone as possible. This ensures that the measured level of contamination is truly representative of that inhaled by the worker.

It should be emphasised that both personal monitoring and monitoring of the workplace should be considered as important parts of an overall, integrated safety plan. They are only intended to provide the necessary information about conditions as they exist in the atmosphere. This then allows the necessary action to be taken to comply with the relevant industrial regulations and safety requirements.

Whatever method is decided upon, it is important to take into account the nature of the toxicity of any of the gases involved. For instance, any instrument which measures only a time-weighted average, or an instrument which draws a sample for subsequent laboratory analysis, would not protect a worker against a short exposure to a lethal dose of a highly toxic substance.

On the other hand, it may be quite normal to briefly exceed the average, Long-Term Exposure Limit (LTEL) levels in some areas of a plant, and it need not be indicated as an alarm situation. Therefore, the optimum instrument system should be capable of monitoring both short and long-term exposure levels as well as instantaneous alarm levels.

ww.honeywellsafety.com / gasmonitors.com

Find Quality Products Online at:

www.GlobalTestSupply.com

Toxic Gases Data

The toxic gases listed below can be detected using equipment supplied by Honeywell Gas Detection. Gas data is supplied where known. As product development is ongoing, contact Honeywell if the gas you require is not listed. Data may change by country and date, always refer to local up-to-date regulations.

OSHA Permissible **European Union** The GESTIS Substance Database, maintained by the Institut für Arbeitsschutz der Exposure Limits (PEL) Deutschen Gesetzlichen Unfallversicherung (IFA, Institute for Occupational Safety Long-Term Exposure Limit (8-hour TWA reference and Health of the German Social Accident Insurance) limitvalue.ifa.dguv.de Long-term Exposure Limit (8-hour TWA reference period) COMMON NAME CAS NUMBER FORMULA PPM MG/M3 PPM MG/M3 PPM MG/M3 7664-41-7 NНз 20 14 50 36 50 35 Ammonia 7784-42-1 0.05 0.2 Arsine AsHa BF₃ Boron Trifluoride 1 3 7637-07-2 7726-95-6 0.7 0.1 0.7 Bromine Br₂ 01 630-08-0 CO 20 23 50 55 **Carbon Monoxide** 100 117 Chlorine 7782-50-5 Cl2 0.5 1.5 1 3 **Chlorine** Dioxide 10049-04-4 ClO₂ 0.1 0.3 1,4 Cyclohexane diisocyanate CHDI 19287-45-7 0.1 0.1 Diborane B2H6 Dichlorosilane (DCS) 4109-96-0 H2Cl2Si Dimethyl Amine (DMA) 124-40-3 C₂H₇N 2 3.8 5 9.4 10 18 Dimethyl Hydrazine (UDMH) 57-14-7 C₂H₈N₂ 0.5 1 1590-87-0 Disilane Si₂H₆ Ethylene Oxide 75-21-8 C2H4O 1 Fluorine 7782-41-4 1 1.58 2 3.16 0.1 0.2 F₂ 7782-65-2 Germane GeH4 822-06-0 Hexamethylene Diisocyanate (HDI) C8H12N2O2 302-01-2 N₂H₄ 1 1.3 Hydrazine 1333-74-0 Hydrogen H2 Hydrogen Bromide 10035-10-6 HBr 2 6.7 3 10 Hydrogen Chloride 7647-01-0 HCI 5 8 10 15 HCN Hydrogen Cyanide 74-90-8 0.9 1 4.5 5 10 11 7664-39-3 1.5 3 2.5 Hydrogen Fluoride ΗF 1.8 3 2.5 10034-85-2 Hydrogen lodide HI Hydrogen Peroxide 7722-84-1 H2O2 1 1.4 0.05 Hydrogen Selenide 7783-07-5 H₂Se 0.02 0.07 0.05 0.17 0.2 Hydrogen Sulphide 7783-06-4 H₂S 5 10 14 4 7 Hydrogenated Methylene Bisphenyl Isocyanate (HMDI) Isocyanatoethyl Methacrylate (IEM) C7H9NO3 Isophorone Diisocyanate (IPDI) C12H18N2O2 Methyl Fluoride (R41) 593-53-3 CH₃F

Find Quality Products Online at:

www.GlobalTestSupply.com

				Europ	OSHA Permissible Exposure Limits (PEL)			
				1 Exposure Limit VA reference		n Exposure Limit e reference period)		Exposure Limit /A reference period)
COMMON NAME	CAS NUMBER	FORMULA	PPM	MG/M3	РРМ	MG/M3	РРМ	MG/M3
Methylene Bisphenyl Isocyanate (MDI)	101-68-8	C15H10N2O2						
Methylene Bisphenyl Isocyanate -2 (MDI-2)	101-68-8	C15H10N2O2						
Methylenedianiline (MDA)	101-77-9	C13H14N2					0.01	
Monomethyl Hydrazine (MMH)	60-34-4	CH6N2						
Naphthalene Diisocyanate (NDI)	3173-72-6	C12H6N2O2						
Nitric Acid	7697-37-2	HNO3			1	2.6	2	5
Nitric Oxide	10102-43-9	NO	2	2.5			25	30
Nitrogen Dioxide	10102-44-0	NO ₂	0.5	0.96	1	1.91		
Nitrogen Trifluoride	7783-54-2	NF3					10	29
n-Butyl Amine (N-BA)	109-73-9	C4H11N						
Ozone	10028-15-6	O3					0.1	0.2
Phosgene	75-44-5	COCl2	0.02	0.08	0.1	0.4	0.1	0.4
Phosphine	7803-51-2	PH ₃	0.1	0.14	0.2	0.28	0.3	0.4
Propylene Oxide	75-56-9	C3H6O					100	240
p-Phenylene Diamine (PPD)	106-50-3	C6H8N2						0.1
p-Phenylene Diisocyanate (PPDI)	104-49-4	C8H4N2O2						
Silane	7803-62-5	SiH4						
Stibine	7803-52-3	SbH₃					0.1	0.5
Sulphur Dioxide	7446-09-5	SO ₂	0.5	1.3	1	2.7	5	13
Sulphuric Acid	7664-93-9	H2SO4						1
Tertiary Butyl Arsine (TBA)								
Tertiary Butyl Phosphine (TBP)	2501-94-2	C4H11P						
Tetraethyl Orthosilicate (TEOS)	78-10-4	C8H2004Si	5	44			100	850
Tetrakis (Dimethylamino) Titanium (TDMAT)	3275-24-9	C8H24N4Ti						
Tetramethyl Xylene Diisocyanate (TMXDI)		C14H16N2O2						
Toluene Diamine (TDA)	95-80-7	C7H10N2						
Toluene Diisocyanate (TDI)	584-84-9	C9H6N2O2						
Triethyl Amine (TEA)	121-44-8	C6H15N	2	8.4	3	12.6	25	100
Trimethylhexamethylene Diisocyanate (TMDI)		C11H18N2O2						
Unsymmetrical Dimethylhydrazine (UDMH)	57-14-7	C2H8N2					0.5	1

www.honeywellsafety.com

Find Quality Products Online at:

www.GlobalTestSupply.com

sales@GlobalTestSupply.com

9

Toxic Exposure Limits

European Occupational Exposure Limits

Occupational Exposure Limit values (OELs) are set by competent national authorities or other relevant national institutions as limits for concentrations of hazardous compounds in workplace air. OELs for hazardous substances represent an important tool for risk assessment and management and valuable information for occupational safety and health activities concerning hazardous substances.

Occupational Exposure Limits can apply both to marketed products and to waste and by-products from production processes. The limits protect workers against health effects, but do not address safety issues such as explosive risk.

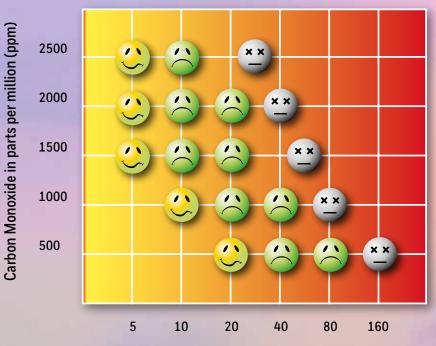
As limits frequently change and can vary by country, you should consult your relevant national authorities to ensure that you have the latest information.

Occupational Exposure Limits in Europe function under the European Union Directive 98/24/EC - risks related to chemical agents at work. Its objective is to lay down minimum requirements for the protection of workers from risks to their safety and health arising, or likely to arise, from the effects of chemical agents that are present at the workplace or as a result of any work activity involving chemical agents.

The Directive enforces the maximum occupational exposure limits for various chemicals. National regulations for individual countries may be tighter, but they cannot exceed the level stipulated by the European Union.

Occupational Exposure Limits are a combination of concentration of a chemical and length of time of exposure to the chemical. The maximum admissible or accepted concentration varies from substance to substance according to its toxicity. The exposure times are averaged for eight hours (8-hour Time-Weighted Average TWA) and 15 minutes (Short-Term Exposure Limit STEL). For some substances, a brief exposure is considered so critical that they are set only a STEL, which should not be exceeded even for a shorter time.

Carcinogenicity, reproduction toxicity, irritation and sensitisation potential as well as the potency to penetrate through skin are considered when preparing a proposal for an OEL according to the present scientific knowledge.


Find Quality Products Online at:

10

www.GlobalTestSupply.com

Effects of exposure to Carbon Monoxide

CHINE OF

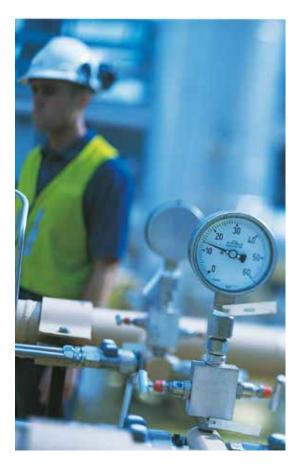
Period of exposure in minutes

GAS FACT

Hydrogen is the lightest, most abundant and explosive gas on Earth.

Find Quality Products Online at:

www.GlobalTestSupply.com


sales@GlobalTestSupply.cor

www.honeywellsafety.co

US Occupational Exposure Limits

The Occupational Safety systems in the United States vary from state to state. Here, information is given on 3 major providers of the Occupational Exposure Limits in the USA - ACGIH, OSHA, and NIOSH. The American Conference of Governmental Industrial Hygienists (ACGIH) publishes Maximum Allowable Concentrations (MAC), which were later renamed to "Threshold Limit Values" (TLVs).

Threshold Limit Values are defined as an exposure limit "to which it is believed nearly all workers can be exposed day after day for a working lifetime without ill effect". The ACGIH is a professional organisation of occupational hygienists from universities or governmental institutions. Occupational hygienists from private industry can join as associate members. Once a year, the different committees propose new threshold limits or best working practice guides. The list of TLVs includes more than 700 chemical substances and physical agents, as well as dozens of Biological Exposure Indices for selected chemicals.

The ACGIH defines different TLV-Types as:

Threshold Limit Value – Time-Weighted Average (TLV-TWA):

The Time-Weighted Average concentration for a conventional 8-hour workday and a 40-hour workweek, to which it is believed that nearly all workers may be repeatedly exposed, day after day, without adverse effect.

Threshold Limit Value – Short-Term Exposure Limit (TLV-STEL):

the concentration to which it is believed that workers can be exposed continuously for a short period of time without suffering from irritation, chronic or irreversible tissue damage, or narcosis. STEL is defined as a 15-minute TWA exposure, which should not be exceeded at any time during a workday.

Threshold Limit Value – Ceiling (TLV-C):

the concentration that should not be exceeded during any part of the working exposure. There is a general excursion limit recommendation that applies to those TLV-TWAs that do not have STELs. Excursions in worker exposure levels may exceed 3 times the TLV-TWA for no more than a total of 30 minutes during a workday and under no workday and under no circumstances should they exceed 5 times the TLV-TWA, provided that the TLV-TWA is not exceeded.

ACGIH-TLVs do not have a legal force in the USA, they are only recommendations. OSHA defines regulatory limits. However, ACGIH-TLVs and the criteria documents are a very common base for setting TLVs in the USA and in many other countries. ACGIH exposure limits are in many cases more protective than OSHA's. Many US companies use the current ACGIH levels or other internal and more protective limits.

The Occupational Safety and Health Administration (OSHA) of the US Department of Labor publishes Permissible Exposure Limits (PEL). PELs are regulatory limits on the amount or concentration of a substance in the air and they are enforceable. The initial set of limits from 1971 was based on the ACGIH TLVs. OSHA currently has around 500 PELs for

www.GlobalTestSupply.com

various forms of approximately 300 chemical substances, many of which are widely used in industrial settings. Existing PELs are contained in a document called "29 CFR 1910.1000", the air contaminants standard. OSHA uses in a similar way as the ACGIH the following types of OELs: TWAs, Action Levels, Ceiling Limits, STELs, Excursion Limits and in some cases Biological Exposure Indices (BEIs).

The National Institute for Occupational Safety and Health (NIOSH) has the statutory responsibility for recommending exposure levels that are protective to workers. NIOSH has identified Recommended Exposure Levels (RELs) for around 700 hazardous substances. These limits have no legal force. NIOSH recommends their limits via criteria documents to OSHA and other OEL setting institutions. Types of RELs are TWA, STEL, Ceiling and BEIs.

The recommendations and the criteria are published in several different document types, such as Current Intelligent Bulletins (CIB), Alerts, Special Hazard Reviews, Occupational Hazard Assessments and Technical Guidelines.

Occupational Exposure Limits Comparison Table

ACGIM	OSHA	NIOSH	MEANING
THRESHOLD LIMIT VALUES (TLVS)	PERMISSIBLE EXPOSURE LIMITS (PELS)	RECOMMENDED EXPOSURE LEVELS (RELS)	LIMIT DEFINITION
TLV-TWA	TWA	TWA	Long-term Exposure Limit (8hr-TWA reference period)
TLV-STEL	STEL	STEL	Short-Term Exposure Limit (15-minute exposure period)
TLV-C	Ceiling	Ceiling	The concentration that should not be exceeded during any part of the working exposure
EXCURSION LIMIT	Excursion Limit	-	Limit if no STEL stated
-	BEIs	BEIs	Biological Exposure Indicies

www.honeywellsafety.com

Find Quality Products Online at:

www.GlobalTestSupply.com

sales@GlobalTestSupply.com

13

Asphyxiant Hazard (Oxygen Deficiency)

We all need to breathe the Oxygen (O₂) in air to live. Air is made up of several different gases including Oxygen. Normal ambient air contains an Oxygen concentration of 20.9% v/v. When the Oxygen level falls below 19.5% v/v, the air is considered Oxygen-deficient. Oxygen concentrations below 16% v/v are considered unsafe for humans.

6% v/v fatal

16% v/v depletion

0% v/v 0₂

14

100%

v/v0₂

Find Quality Products Online at:

www.GlobalTestSupply.com

GAS FACT

The atomic weight of Radon is 222 atomic mass units making it the heaviest known gas. It is 220 times heavier than the lightest gas, Hydrogen.

Oxygen Enrichment

It is often forgotten that Oxygen enrichment can also cause a risk. At increased O2 levels the flammability of materials and gases increases. At levels of 24% items such as clothing can spontaneously combust.

Oxyacetylene welding equipment combines Oxygen and Acetylene gas to produce an extremely high temperature. Other areas where hazards may arise from Oxygen enriched atmospheres include manufacturing areas for storing rocket propulsion systems, products used for bleaching in the pulp and paper industry and clean water treatment facilities.

Sensors have to be specially certified for use in O_2 enriched atmospheres.

www.honeywellsafety.com

20.9% v/v normal

www.GlobalTestSupply.com

Flammable Gas Hazards

Combustion is a fairly simple chemical reaction in which Oxygen is combined rapidly with another substance resulting in the release of energy. This energy appears mainly as heat sometimes in the form of flames.

The igniting substance is normally, but not always, a Hydrocarbon compound and can be solid, liquid, vapour or gas. However, only gases and vapours are considered in this publication.

The Fire Triangle

The process of combustion can be represented by the well known fire triangle.

Three factors are always needed to cause combustion:

FUEL

- 1. A source of ignition
- 2. Oxygen
- 3. Fuel in the form of a gas or vapour

In any fire protection system, therefore, the aim is to always remove at least one of these three potentially hazardous items.

Find Quality Products Online at:

www.GlobalTestSupply.com

GAS FACT

High levels of O₂ increase the flammability of materials and gases – at levels such as 24%, items such as clothing can spontaneously combust!

Flammable Limit

There is only a limited band of gas/air concentration which will produce a combustible mixture. This band is specific for each gas and vapour and is bounded by an upper level, known as the Upper Explosive Limit (or the UEL) and a lower level, called the Lower Explosive Limit (LEL).

Limits of Flammability

.

100% v/v gas 0% v/v air

UEL (upper explosive limit)

FLAMMABLE RANGE

LEL (lower explosive limit)

TOO LEAN

TOO RICH

0% v/v gas 100% v/v air

At levels below the LEL, there is insufficient gas to produce an explosion i.e. the mixture is too 'lean'. whilst above the UEL, the mixture has insufficient Oxygen i.e. the mixture is too 'rich'. The flammable range therefore falls between the limits of the LEL and UEL for each individual gas or mixture of gases. Outside these limits, the mixture is not capable of combustion. The Flammable Gases Data on page 20-21 indicates the limiting values for some of the better-known combustible gases and compounds. The data is given for gases and vapours at normal conditions of pressure and temperature.

An increase in pressure, temperature or Oxygen content will generally broaden the flammability range.

In the average industrial plant, there would normally be no gases leaking into the surrounding area or, at worst, only a low background level of gas present. Therefore the detecting and early warning system will only be required to detect levels from 0% of gas up to the lower explosive limit. By the time this concentration is reached, shut-down procedures or site clearance should have been put into operation. In fact this will typically take place at a concentration of less than 50% of the LEL value, so that an adequate safety margin is provided.

However, it should always be remembered that in enclosed or unventilated areas, a concentration in excess of the UEL can sometimes occur. At times of inspection, special care needs to be taken when operating hatches or doors, since the ingress of air from outside can dilute the gases to a hazardous, combustible mixture.

(N.B LEL/LFL and UEL/UFL are, for the purpose of this publication, interchangeable).

www.honeywellsafety.com

17

Find Quality Products Online at:

www.GlobalTestSupply.com

Flammable Gas Properties

Ignition Temperature

Flammable gases also have a temperature where ignition will take place, even without an external ignition source such as a spark or flame. This temperature is called the Ignition Temperature. Apparatus for use in a hazardous area must not have a surface temperature that exceeds the Ignition Temperature. Apparatus is therefore marked with a maximum surface temperature or T rating.

Flash Point (F.P. °C)

The flash point of a flammable liquid is the lowest temperature at which the surface of the liquid emits sufficient vapour to be ignited by a small flame. Do not confuse this with Ignition Temperature as the two can be very different:

GAS / VAPOUR	FLASH POINT °C	IGNITION TEMP. °C
METHANE	<-188	595
KEROSENE	38	210
BITUMEN	270	310

To convert a Celsius temperature into Fahrenheit: Tf = $((9/5)^{*}Tc)+32$ E.g. to convert -20 Celsius into Fahrenheit, first multiply the Celsius temperature reading by nine-fifths to get -36. Then add 32 to get -4°F.

Vapour Density

Vapour density is a measure of how "heavy" a gas or vapour is, and can be used to help determine sensor placement.

The density of a gas or vapour is compared with air.

When air = 1.0:

A substance with a vapour density < 1.0 will rise

A substance with a vapour density > 1.0 will fall

GAS / VAPOUR	VAPOUR DENSITY
METHANE	0.55
CARBON MONOXIDE	0.97
HYDROGEN SULPHIDE	1.45
PETROL VAPOUR	3.0 approx

Find Quality Products Online at:

18

www.GlobalTestSupply.com

GAS FACT

It's not just gas that holds a potential threat - dust can also be explosive! Examples of explosive dusts include polystyrene, cornstarch and iron.

> Honeywi 300 ba

> > ultra lig

Find Quality Products Online at:

Honeywell

300 bar

eywell under

Honey

300 b

@ 200134 7000

www.GlobalTestSupply.com

sales@GlobalTestSupply.com

gasmonitors.

oneywellsafety.com

Flammable Gases Data

References: BS EN 60079-20-1 (supersedes 61779) Electrical apparatus for the detection and measurement of flammable gases-Part 1: General requirements and test methods. NIST Chemistry Web Book June 2005 release. Aldrich Handbook of Fine Chemicals and Laboratory Equipment 2003-2004.

Data may change by country and date, always refer to local up-to-date regulations.

Please note: Where "gas" is stated under Flash Point (F.P. C^o), the compound is always in a gaseous state and therefore does not have a FP.

								FLAMMABLE LIMITS			
COMMON NAME	CAS NUMBER	FORMULA	MOLECULAR WEIGHT	BOILING POINT °C	RELATIVE VAPOURISATION DENSITY	F.P. ⁰C	LFL % V/V	UFL % V/V	LFL MG/L	UFL MG/L	I.T. °C
Acetaldehyde	75-07-0	СНзСНО	44.05	20	1.52	-38	4.00	60.00	74	1,108	204
Acetic acid	64-19-7	СН3СООН	60.05	118	2.07	40	4.00	17.00	100	428	464
Acetic anhydride	108-24-7	(CH3CO)2O	102.09	140	3.52	49	2.00	10.30	85	428	334
Acetone	67-64-1	(CH3)2CO	58.08	56	2.00	<-20	2.50	13.00	80	316	535
Acetonitrile	75-05-8	CH3CN	41.05	82	1.42	2	3.00	16.00	51	275	523
Acetyl chloride	75-36-5	CH3COCl	78.5	51	2.70	-4	5.00	19.00	157	620	390
Acetylene	74-86-2	CH=CH	26	-84	0.90	gas	2.30	100.00	24	1,092	305
Acetyl fluoride	557-99-3	CH3COF	62.04	20	2.14	<-17	5.60	19.90	142	505	434
Acrylaldehyde	107-02-8	CH2=CHCHO	56.06	53	1.93	-18	2.80	31.80	65	728	217
Acrylic acid	79-10-7	CH2=CHCOOH	72.06	139	2.48	56	2.90		85		406
Acrylonitrile	107-13-1	CH2=CHCN	53.1	77	1.83	-5	2.80	28.00	64	620	480
Acryloyl chloride	814-68-6	CH2CHCOCI	90.51	72	3.12	-8	2.68	18.00	220	662	463
Allyl acetate	591-87-7	CH2=CHCH2OOCCH3	100.12	103	3.45	13	1.70	10.10	69	420	348
Allyl alcohol	107-18-6	CH2=CHCH2CH	58.08	96	2.00	21	2.50	18.00	61	438	378
Allyl chloride	107-05-1	CH2=CHCH2Cl	76.52	45	2.64	-32	2.90	11.20	92	357	390
Ammonia	7664-41-7	NH3	17	-33	0.59	gas	15.00	33.60	107	240	630
Aniline	62-53-3	C6H6NH2	93.1	184	3.22	75	1.20	11.00	47	425	630
Benzaldehyde	100-52-7	C6H5CHO	106.12	179	3.66	64	1.40		62		192
Benzene	71-43-2	СеНе	78.1	80	2.70	-11	1.20	8.60	39	280	560
1-Bromobutane	109-65-9	CH3(CH2)2CH2Br	137.02	102	4.72	13	2.50	6.60	143	380	265
Bromoethane	74-96-4	CH3CH2Br	108.97	38	3.75	<-20	6.70	11.30	306	517	511
1,3 Butadiene	106-99-0	CH2=CHCH=CH2	54.09	-4.5	1.87	gas	1.40	16.30	31	365	430
Butane	106-97-8	C4H10	58.1	-1	2.05	gas	1.40	9.30	33	225	372
Isobutane	75-28-5	(CH3)2CHCH3	58.12	-12	2.00	gas	1.30	9.80	31	236	460
Butan-1-ol	71-36-3	CH3(CH2)2CH2OH	74.12	116	2.55	29	1.40	12.00	52	372	359
Butanone	78-93-3	CH3CH2COCH3	72.1	80	2.48	-9	1.50	13.40	45	402	404
But-1-ene	106-98-9	CH2=CHCH2CH3	56.11	-6.3	1.95	gas	1.40	10.00	38	235	440
But-2-ene (isomer not stated)	107-01-7	CH3CH=CHCH3	56.11	1	1.94	gas	1.60	10.00	40	228	325
Butyl acetate	123-86-4	CH3COOCH2(CH2)2CH3	116.2	127	4.01	22	1.20	8.50	58	408	370
n-Butyl acrylate	141-32-2	CH2=CHCOOC4H9	128.17	145	4.41	38	1.20	9.90	63	425	268
Butylamine	109-73-9	CH3(CH2)3NH2	73.14	78	2.52	-12	1.70	9.80	49	286	312
Isobutylamine	78-81-9	(CH3)2CHCH2NH2	73.14	64	2.52	-20	1.47	10.80	44	330	374
lsobutylisobutyrate	97-85-8	(CH3)2CHCOOCH2CH(CH3)2	144.21	145	4.93	34	0.80		47		424
Butylmethacrylate	97-88-1	CH2=C(CH3)COO(CH2)3CH3	142.2	160	4.90	53	1.00	6.80	58	395	289
Tert-butyl methyl ether	1634-04-4	CH3OC(CH3)2	88.15	55	3.03	-27	1.50	8.40	54	310	385
n-Butylpropionate	590-01-2	C2H5COOC4H9	130.18	145	4.48	40	1.00	7.70	53	409	389
Butyraldehyde	123-72-8	CH3CH2CH2CH0	72.1	75	2.48	-16	1.80	12.50	54	378	191
lsobutyraldehyde	78-84-2	(CH3)2CHCHO	72.11	63	2.48	-22	1.60	11.00	47	320	176
Carbon disulphide	75-15-0	CS2	76.1	46	2.64	-30	0.60	60.00	19	1,900	95
			28				T				805

20

Find Quality Products Online at:

www.GlobalTestSupply.com

											<u> </u>
COMMON NAME	CAS NUMBER	FORMULA	MOLECULAR WEIGHT	BOILING POINT °C	RELATIVE VAPOURISATION DENSITY	F.P. °C	LFL % V/V	UFL % V/V	LFL MG/L	UFL MG/L	I.T. °C
Carbonyl sulphide	463-58-1	COS	60.08	-50	2.07	gas	6.50	28.50	100	700	209
Chlorobenzene	108-90-7	C6H5Cl	112.6	132	3.88	28	1.30	11.00	60	520	637
1-Chlorobutane	109-69-3	CH3(CH2)2CH2Cl	92.57	78	3.20	-12	1.80	10.00	69	386	250
2-Chlorobutane	78-86-4	CH3CHClC2H5	92.57	68	3.19	<-18	2.00	8.80	77	339	368
1-Chloro-2,3-epoxypropane	106-89-8	OCH2CHCH2Cl	92.52	115	3.30	28	2.30	34.40	86	1,325	385
Chloroethane	75-00-3	CH3CH2Cl	64.5	12	2.22	gas	3.60	15.40	95	413	510
2-Chloroethanol	107-07-3	CH2CICH2OH	80.51	129	2.78	55	4.90	16.00	160	540	425
Chloroethylene	75-01-4	CH2=CHCl	62.3	-15	2.15	gas	3.60	33.00	94	610	415
Chloromethane	74-87-3	CH3Cl	50.5	-24	1.78	gas	7.60	19.00	160	410	625
1-Chloro-2-methylpropane	513-36-0	(CH3)2CHCH2Cl	92.57	68	3.19	<-14	2.00	8.80	75	340	416
3-Chloro-2-methylprop-1-ene	563-47-3	CH2=C(CH3)CH2Cl	90.55	71	3.12	-16	2.10		77		478
5-Chloropentan-2-one	5891-21-4	CH3CO(CH2)3Cl	120.58	71	4.16	61	2.00		98		440
1-Chloropropane	540-54-5	CH3CH2CH2Cl	78.54	37	2.70	-32	2.40	11.10	78	365	520
2-Chloropropane	75-29-6	(CH3)2CHCl	78.54	47	2.70	<-20	2.80	10.70	92	350	590
Chlorotrifluoroethyl-ene	79-38-9	CF2=CFCl	116.47	-28.4	4.01	gas	4.60	84.30	220	3,117	607
α -Chlorotoluene	100-44-7	C6H5CH2Cl	126.58		4.36	60	1.10		55		585
Cresols (mixed isomers)	1319-77-3	СН3С5Н4ОН	108.14	191	3.73	81	1.10		50		555
Crotonaldehyde	123-73-9	CH3CH=CHCHO	70.09	102	2.41	13	2.10	16.00	82	470	280
Cumene	98-82-8	c6H5CH(CH3)2	120.19	152	4.13	31	0.80	6.50	40	328	424
Cyclobutane	287-23-0	CH2(CH2)2CH2	56.1	13	1.93	gas	1.80		42		
Cycloheptane	291-64-5	CH2(CH2)5CH2	98.19	118.5	3.39	<10	1.10	6.70	44	275	
Cyclohexane	110-82-7	CH2(CH2)4CH2	84.2	81	2.90	-18	1.00	8.00	35	290	259
Cyclohexanol	108-93-0	CH2(CH2)4CHOH	100.16	161	3.45	61	1.20	11.10	50	460	300
Cyclohexanone	108-94-1	CH2(CH2)4CO	98.1	156	3.38	43	1.30	8.40	53	386	419
Cyclohexene	110-83-8	CH2(CH2)3CH=CH	82.14	83	2.83	-17	1.10	8.30	37		244
Cyclohexylamine	108-91-8	CH2(CH2)4CHNH2	99.17	134	3.42	32	1.10	9.40	47	372	293
Cyclopentane	287-92-3	CH2(CH2)3CH2	70.13	50	2.40	-37	1.40		41		320
Cyclopentene	142-29-0	CH=CHCH2CH2CH	68.12	44	2.30	<-22	1.48		41		309
Cyclopropane	75-19-4	CH2CH2CH2	42.1	-33	1.45	gas	2.40	10.40	42	183	498
Cyclopropyl methyl ketone	765-43-5	CH3COCHCH2CH2	84.12	114	2.90	15	1.70		58		452
p-Cymene	99-87-6	CH3CH6H4CH(CH3)2	134.22	176	4.62	47	0.70	5.60	39	366	436
Decahydro-naphthalene trans	493-02-7	CH2(CH2)3CHCH(CH2)3CH2	138.25	185	4.76	54	0.70	4.90	40	284	288
Decane (mixed isomers)	124-18-5	C10H22	142.28	173	4.90	46	0.70	5.60	41	332	201
Dibutyl ether	142-96-1	(CH3(CH2)3)2O	130.2	141	4.48	25	0.90	8.50	48	460	198
Dichlorobenzenes (isomer not stated)	106-46-7	C6H4Cl2	147	179	5.07	86	2.20	9.20	134	564	648
Dichlorodiethyl-silane	1719-53-5	(C2H5)SiCl2	157.11	128	3.42	24	3.40		223		
1,1-Dichloroethane	75-34-3	CH3CHCl2	99	57	3.42	-10	5.60	16.00	230	660	440
1,2-Dichloroethane	107-06-2	CH2CICH2CI	99	84	3.55	13	6.20	16.00	255	654	438
Dichloroethylene	540-59-0	CICH=CHCI	96.94	37	3.90	-10	9.70	12.80	391	516	440

www.honeywellsafety.com

21

Find Quality Products Online at:

www.GlobalTestSupply.com

Flammable Gases Data

(continued)

		Formula	MOLECULAR WEIGHT	R BOILING POINT °C	VAPOLIRISATION			FLAMMABLE LIMITS				
COMMON NAME	CAS NUMBER					F.P. ⁰C	LFL % V/V	UFL % V/V	LFL MG/L	UFL MG/L	I.T. °C	
1,2-Dichloro-propane	78-87-5	CH3CHClCH2Cl	113	96	4.55	15	3.40	14.50	160	682	557	
Dicyclopentadiene	77-73-6	C10H12	132.2	170	2.53	36	0.80		43		455	
Diethylamine	109-89-7	(C2H5)2NH	73.14	55	4.07	-23	1.70	10.00	50	306	312	
Diethylcarbonate	105-58-8	(CH3CH2O)2CO	118.13	126	2.55	24	1.40	11.70	69	570	450	
Diethyl ether	60-29-7	(CH3CH5)2O	74.1	34	2.21	-45	1.70	36.00	60	1,118	160	
1,1-Difluoro-ethylene	75-38-7	CH2=CF2	64.03	-83	4.45	gas	3.90	25.10	102	665	380	
Diisobutylamine	110-96-3	((CH3)2CHCH2)2NH	129.24	137	4.97	26	0.80	3.60	42	190	256	
Diisobutyl carbinol	108-82-7	((CH3)2CHCH2)2CHOH	144.25	178	5.45	75	0.70	6.10	42	370	290	
Diisopentyl ether	544-01-4	(CH3)2CH(CH2)2O(CH2)2CH(CH3)2	158.28	170	3.48	44	1.27		104		185	
Diisopropylamine	108-18-9	((CH3)2CH)2NH	101.19	84	3.52	-20	1.20	8.50	49	358	285	
Diisopropyl ether	108-20-3	((CH3)2CH)2O	102.17	69	1.55	-28	1.00	21.00	45	900	405	
Dimethylamine	124-40-3	(CH3)2NH	45.08	7	2.60	gas	2.80	14.40	53	272	400	
Dimethoxymethane	109-87-5	CH2(OCH)3)2	76.09	41	3.38	-21	2.20	19.90	71	630	247	
3-(Dimethylamino) propiononitrile	1738-25-6	(CH3)2NHCH2CH2CN	98.15	171	1.59	50	1.57		62		317	
Dimethyl ether	115-10-6	(CH3)2O	46.1	-25	2.51	gas	2.70	32.00	51	610	240	
N,N-Dimethylformamide	68-12-2	HCON(CH3)2	73.1	152	3.87	58	1.80	16.00	55	500	440	
3,4-Dimethyl hexane	583-48-2	СНзСН2СН(СНз)СН(СНз)СН2СНз	114.23	119	2.07	2	0.80	6.50	38	310	305	
N,N-Dimethyl hydrazine	57-14-7	(CH3)2NNH2	60.1	62	3.03	-18	2.40	20	60	490	240	
1,4-Dioxane	123-91-1	OCH2CH2OCH2CH2	88.1	101	2.55	11	1.40	22.50	51	813	379	
1,3-Dioxolane	646-06-0	OCH2CH2OCH2	74.08	74	3.48	-5	2.30	30.50	70	935	245	
Dipropylamine	142-84-7	(CH3CH2CH2)2NH	101.19	105	1.04	4	1.20	9.10	50	376	280	
Ethane	74-84-0	СНзСНз	30.1	-87	2.11	gas	2.50	15.50	31	194	515	
Ethanethiol	75-08-1	CH3CH2SH	62.1	35	1.59	<-20	2.80	18.00	73	466	295	
Ethanol	64-17-5	СН3СН2ОН	46.1	78	3.10	12	3.10	19.00	59	359	363	
2-Ethoxyethanol	110-80-5	CH3CH2OCH2CH2OH	90.12	135	4.72	40	1.70	15.70	68	593	235	
2-Ethoxyethyl acetate	111-15-9	CH3COOCH2CH2OCH2CH3	132.16	156	3.04	47	1.20	12.70	65	642	380	
Ethyl acetate	141-78-6	CH3COOCH2CH3	88.1	77	4.50	-4	2.00	2.80	73	470	460	
Ethyl acetoacetate	141-97-9	CH3COCH2COOCH2CH3	130.14	181	3.45	65	1.00	9.50	54	519	350	
Ethyl acrylate	140-88-5	CH2=CHCOOCH2CH3	100.1	100	1.50	9	1.40	14.00	59	588	350	
Ethylamine	75-04-7	C2H5NH2	45.08	16.6	3.66	<-20	3.50	14.00	49	260	425	
Ethylbenzene	100-41-4	CH2CH3C6H5	106.2	135	4.00	23	0.80	7.80	44	340	431	
Ethyl butyrate	105-54-4	CH3CH2CH2COOC2H5	116.16	120	2.90	21	1.40		66		435	
Ethylcyclobutane	4806-61-5	CH3CH2CHCH2CH2CH2	84.16	131	3.87	<-16	1.20	7.70	42	272	212	
Ethylcyclohexane	1678-91-7	CH3CH2CH(CH2)4CH2	112.2	103	3.40	<24	0.80	6.60	42	310	238	
Ethylcyclopentane	1640-89-7	CH3CH2CH(CH2)3CH2	98.2	-104	0.97	<5	1.05	6.80	42	280	262	
Ethylene	74-85-1	CH2=CH2	28.1				2.30	36.00	26	423	425	
Ethylenediamine	107-15-3	NH2CH2CH2NH2	60.1	118	2.07	34	2.50	18.00	64	396	403	
Ethylene oxide	75-21-8	CH2CH2O	44	11	1.52	<-18	2.60	100.00	47	1,848	435	
Ethyl formate	109-94-4	HCOOCH2CH3	74.08	52	2.65	-20	2.70	16.50	87	497	440	
Ethyl isobutyrate	97-62-1	(CH3)2CHCOOC2H5	116.16	112	4.00	10	1.60		75		438	

22

Find Quality Products Online at:

www.GlobalTestSupply.com

COMMON NAME	CAS NUMBER	FORMULA	MOLECULAR WEIGHT	BOILING POINT °C	RELATIVE VAPOURISATION DENSITY	F.P. °C	LFL % V/V	UFL % V/V	LFL MG/L	UFL MG/L	I.T. °C
Ethyl methacrylate	97-63-2	CH2=CCH3COOCH2CH3	114.14	118	3.90	20	1.50		70		
Ethyl methyl ether	540-67-0	CH3OCH2CH3	60.1	8	2.10	gas	2.00	10.10	50	255	190
Ethyl nitrite	109-95-5	CH3CH2ONO	75.07		2.60	-35	3.00	50.00	94	1,555	95
Formaldehyde	50-00-0	НСНО	30	-19	1.03	60	7.00	73.00	88	920	424
Formic acid	64-18-6	НСООН	46.03	101	1.60	42	18.00	57.00	190	1,049	520
2-Furaldehyde	98-01-1	OCH=CHCH=CHCHO	96.08	162	3.30	60	2.10	19.30	85	768	316
Furan	110-00-9	CH=CHCH=CHO	68.07	32	2.30	<-20	2.30	14.30	66	408	390
Furfuryl alcohol	98-00-0	OC(CH2OH)CHCHCH	98.1	170	3.38	61	1.80	16.30	70	670	370
1,2,3-Trimethyl-benzene	526-73-8	CHCHCHC(CH3)C(CH3)C(CH3)	120.19	175	4.15	51	0.80	7.00			470
Heptane (mixed isomers)	142-82-5	C7H16	100.2	98	3.46	-4	0.85	6.70	35	281	215
Hexane (mixed isomers)	110-54-3	СН3(СН2)4СН3	86.2	69	2.97	-21	1.00	8.90	35	319	233
1-Hexanol	111-27-3	С6Н1зОН	102.17	156	3.50	63	1.10		47		293
Hexan-2-one	591-78-6	CH3CO(CH2)3CH3	100.16	127	3.46	23	1.20	9.40	50	392	533
Hydrogen	1333-74-0	H2	2	-253	0.07	gas	4.00	77.00	3.4	63	560
Hydrogen cyanide	74-90-8	HCN	27	26	0.90	<-20	5.40	46.00	60	520	538
Hydrogen sulphide	7783-06-4	H2S	34.1	-60	1.19	gas	4.00	45.50	57	650	270
4-Hydroxy-4-methyl-penta- 2-one	123-42-2	CH3COCH2C(CH3)2OH	116.16	166	4.00	58	1.80	6.90	88	336	680
Kerosene	8008-20-6			150		38	0.70	5.00			210
1,3,5-Trimethylbenzene	108-67-8	CHC(CH3)CHC(CH3)CHC(CH3)	120.19	163	4.15	44	0.80	7.30	40	365	499
Methacryloyl chloride	920-46-7	CH2CCH3COCl	104.53	95	3.60	17	2.50		106		510
Methane (firedamp)	74-82-8	CH4	16	-161	0.55	<-188	4.40	17.00	29	113	537
Methanol	67-56-1	СНзОН	32	65	1.11	11	6.00	36.00	73	665	386
Methanethiol	74-93-1	CH3SH	48.11	6	1.60	4.10	4.10	21.00	80	420	
2-Methoxyethanol	109-86-4	CH3OCH2CH2OH	76.1	124	2.63	39	1.80	20.60	76	650	285
Methyl acetate	79-20-9	СНзСООСНз	74.1	57	2.56	-10	3.10	16.00	95	475	502
Methyl acetoacetate	105-45-3	CH3COOCH2COCH3	116.12	169	4.00	62	1.30	14.20	62	685	280
Methyl acrylate	96-33-3	CH2=CHCOOCH3	86.1	80	3.00	-3	1.95	16.30	71	581	415
Methylamine	74-89-5	CH3NH2	31.1	-6	1.00	gas	4.20	20.70	55	270	430
2-Methylbutane	78-78-4	(CH3)2CHCH2CH3	72.15	30	2.50	-56	1.30	8.30	38	242	420
2-Methylbutan-2-ol	75-85-4	CH3CH2C(OH)(CH3)2	88.15	102	3.03	16	1.40	10.20	50	374	392
3-Methylbutan-1-ol	123-51-3	(CH3)2CH(CH2)2OH	88.15	130	3.03	42	1.30	10.50	47	385	339
2-Methylbut-2-ene	513-35-9	(CH3)2C=CHCH3	70.13	35	2.40	-53	1.30	6.60	37	189	290
Methyl chloro-formate	79-22-1	CH300CC	94.5	70	3.30	10	7.50	26	293	1,020	475
Methylcyclohexane	108-87-2	CH3CH(CH2)4CH2	98.2	101	3.38	-4	1.00	6.70	41	275	258
Methylcyclo-pentadienes (isomer not stated)	26519-91-5	СеНе	80.13		2.76	<-18	1.30	7.60	43	249	432
Methylcyclopentane	96-37-7	CH3CH(CH2)3CH2	84.16	72	2.90	<-10	1.00	8.40	35	296	258
Methylenecyclo-butane	1120-56-5	C(=CH2)CH2CH2CH2	68.12		2.35	<0	1.25	8.60	35	239	352
2-Methyl-1-buten-3-yne	78-80-8	HC=CC(CH3)CH2	66.1	32	2.28	-54	1.40		38		272
Methyl formate	107-31-3	HCOOCH3	60.05	32	2.07	-20	5.00	23.00	125	580	450

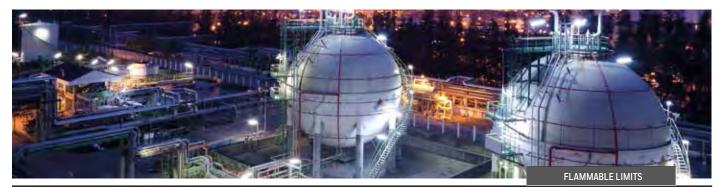
www.honeywellsafety.com

23

Find Quality Products Online at:

www.GlobalTestSupply.com

Flammable Gases Data


(continued)

		FORMULA		BOILING POINT °C	VAPOLIDISATION			FLAMMA	BLE LIMIT	S	
COMMON NAME	CAS NUMBER		MOLECULAR WEIGHT			F.P. ⁰C	LFL % V/V	UFL % V/V	LFL MG/L	UFL MG/L	I.T. °C
2-Methylfuran	534-22-5	OC(CH3)CHCHCH	82.1	63	2.83	<-16	1.40	9.70	47	325	318
Methylisocyanate	624-83-9	CH3NCO	57.05	37	1.98	-7	5.30	26.00	123	605	517
Methyl methacrylate	80-62-6	CH3=CCH3COOCH3	100.12	100	3.45	10	1.70	12.50	71	520	430
4-Methylpentan-2-ol	108-11-2	(CH3)2CHCH2CHOHCH3	102.17	132	3.50	37	1.14	5.50	47	235	334
4-Methylpentan-2-one	108-10-1	(CH3)2CHCH2COCH3	100.16	117	3.45	16	1.20	8.00	50	336	475
2-Methylpent-2-enal	623-36-9	CH3CH2CHC(CH3)COH	98.14	137	3.78	30	1.46		58		206
4-Methylpent-3-en-2-one	141-79-7	(CH3)2(CCHCOCH)3	98.14	129	3.78	24	1.60	7.20	64	289	306
2-Methyl-1-propanol	78-83-1	(CH3)2CHCH2OH	74.12	108	2.55	28	1.40	11.00	43	340	408
2-Methylprop-1-ene	115-11-7	(CH3)2C=CH2	56.11	-6.9	1.93	gas	1.60	10	37	235	483
2-Methylpyridine	109-06-8	NCH(CH3)CHCHCHCH	93.13	128	3.21	27	1.20		45		533
3-Methylpyridine	108-99-6	NCHCH(CH3)CHCHCH	93.13	144	3.21	43	1.40	8.10	53	308	537
4-Methylpyridine	108-89-4	NCHCHCH(CH3)CHCH	93.13	145	3.21	43	1.10	7.80	42	296	534
-Methyl styrene	98-83-9	C6H5C(CH3)=CH2	118.18	165	4.08	40	0.80	11.00	44	330	445
Methyl tert-pentyl ether	994-05-8	(CH3)2C(OCH3)CH2CH3	102.17	85	3.50	<-14	1.50		62		345
2-Methylthiophene	554-14-3	SC(CH3)CHCHCH	98.17	113	3.40	-1	1.30	6.50	52	261	433
Morpholine	110-91-8	OCH2CH2NHCH2CH2	87.12	129	3.00	31	1.40	15.20	65	550	230
Naphtha				35	2.50	<-18	0.90	6.00			290
Naphthalene	91-20-3	C10H8	128.17	218	4.42	77	0.60	5.90	29	317	528
Nitrobenzene	98-95-3	CH3CH2NO2	123.1	211	4.25	88	1.40	40.00	72	2,067	480
Nitroethane	79-24-3	C2H5NO2	75.07	114	2.58	27	3.40		107		410
Nitromethane	75-52-5	CH3NO2	61.04	102.2	2.11	36	7.30	63.00	187	1,613	415
1-Nitropropane	108-03-2	CH3CH2CH2NO2	89.09	131	3.10	36	2.20		82		420
Nonane	111-84-2	CH3(CH2)7CH2	128.3	151	4.43	30	0.70	5.60	37	301	205
Octane	111-65-9	СН3(СН2)3СН3	114.2	126	3.93	13	0.80	6.50	38	311	206
1-Octanol	111-87-5	CH3(CH2)6CH2OH	130.23	196	4.50	81	0.90	7.00	49	385	270
Penta-1,3-diene	504-60-9	CH2=CH-CH=CH-CH3	68.12	42	2.34	<-31	1.20	9.40	35	261	361
Pentanes (mixed isomers)	109-66-0	C5H12	72.2	36	2.48	-40	1.40	7.80	42	261	258
Pentane-2,4-dione	123-54-6	CH3COCH2COCH3	100.1	140	3.50	34	1.70		71		340
Pentan-1-ol	71-41-0	CH3(CH2)3CH2OH	88.15	136	3.03	38	1.06	10.50	36	385	298
Pentan-3-one	96-22-0	(CH3CH2)2CO	86.13	101.5	3.00	12	1.60		58		445
Pentyl acetate	628-63-7	CH3COO-(CH2)4-CH3	130.18	147	4.48	25	1.00	7.10	55	387	360
Petroleum					2.80	<-20	1.20	8.00			560
Phenol	108-95-2	С6Н5ОН	94.11	182	3.24	75	1.30	9.50	50	370	595
Propane	74-98-6	CH3CH2CH3	44.1	-42	1.56	gas	1.70	10.90	31	200	470
Propan-1-ol	71-23-8	CH3CH2CH2OH	60.1	97	2.07	22	2.10	17.50	52	353	405
Propan-2-ol	67-63-0	(СН3)2СНОН	60.1	83	2.07	12	2.00	12.70	50	320	425
Propene	115-07-1	CH2=CHCH3	42.1	-48		gas	2.00	11.10	35	194	455
Propionic acid	_			1/1	2.55	52	2.10	12.00	64	370	435
	79-09-4	CH3CH2COOH	14.08	141	2.00	102	2.10	112.00	104	1310	1 100
Propionic aldehyde	79-09-4 123-38-6	C13CH2COUH C2H5CH0	74.08 58.08	141 46	2.00	<-26	2.00	12.00	47	1310	188

24

Find Quality Products Online at:

www.GlobalTestSupply.com

COMMON NAME	CAS NUMBER	FORMULA	MOLECULAR WEIGHT	BOILING POINT °C	RELATIVE VAPOURISATION DENSITY	F.P. °C	LFL % V/V	UFL % V/V	LFL MG/L	UFL MG/L	I.T. °C
Isopropyl acetate	108-21-4	CH3COOCH(CH3)2	102.13	85	3.51	4	1.70	8.10	75	340	467
Propylamine	107-10-8	CH3(CH2)2NH2	59.11	48	2.04	-37	2.00	10.40	49	258	318
Isopropylamine	75-31-0	(CH3)2CHNH2	59.11	33	2.03	<-24	2.30	8.60	55	208	340
Isopropyl Chloroacetate	105-48-6	CICH2COOCH(CH3)2	136.58	149	4.71	42	1.60		89		426
2-Isopropyl-5-methylhex- 2-enal	35158-25-9	(CH3)2CH-C(CHO) CHCH2CH(CH3)2	154.25	189	5.31	41	3.05		192		188
Isopropyl nitrate	1712-64-7	(CH3)2CHONO2	105.09	101		11	2.00	100.00	75	3,738	175
Propyne	74-99-7	CH3C=CH	40.06	-23.2	1.38	gas	1.70	16.8	28	280	340
Prop-2-yn-1-ol	107-19-7	HC=CCH2OH	56.06	114	1.89	33	2.40		55		346
Pyridine	110-86-1	C5H5N	79.1	115	2.73	17	1.70	12.40	56	398	550
Styrene	100-42-5	C6H5CH=CH2	104.2	145	3.60	30	1.00	8.00	42	350	490
Tetrafluoroethylene	116-14-3	CF2=CF2	100.02		3.40	gas	10.00	59.00	420	2,245	255
2,2,3,3-Tetrafluoropropyl acrylate	7383-71-3	CH2=CHCOOCH2CF2CF2H	186.1	132	6.41	45	2.40		182		357
2,2,3,3-Tetrafluoropropyl methacrylate	45102-52-1	CH2=C(CH2) COOCH2CF2CF2H	200.13	124	6.90	46	1.90		155		389
Tetrahydrofuran	109-99-9	CH2(CH2)2CH2O	72.1	64	2.49	-20	1.50	12.40	46	370	224
Tetrahydrofurfuryl alcohol	97-99-4	OCH2CH2CH2CHCH2OH	102.13	178	3.52	70	1.50	9.70	64	416	280
Tetrahydrothiophene	110-01-0	CH2(CH2)2CH2S	88.17	119	3.04	13	1.00	12.30	42	450	200
N,N,N', N'- Tetramethyldiaminomethane	51-80-9	(CH3)2NCH2N(CH3)2	102.18	85	3.50	<-13	1.61		67		180
Thiophene	110-02-1	CH=CHCH=CHS	84.14	84	2.90	-9	1.50	12.50	50	420	395
Toluene	108-88-3	C6H5CH3	92.1	111	3.20	4	1.10	7.80	39	300	535
Triethylamine	121-44-8	(CH3CH2)3N	101.2	89	3.50	-7	1.20	8.00	51	339	
1,1,1-Trifluoroethane	420-46-2	CF3CH3	84.04		2.90		6.80	17.60	234	605	714
2,2,2-Trifluoroethanol	75-89-8	CF3CH2OH	100.04	77	3.45	30	8.40	28.80	350	1,195	463
Trifluoroethylene	359-11-5	CF2=CFH	82.02		2.83		27.00	502	904	319	
3,3,3-Trifluoro-prop-1-ene	677-21-4	CF3CH=CH2	96.05	-16	3.31		4.70		184		490
Trimethylamine	75-50-3	(CH3)3N	59.1	3	2.04	gas	2.00	12.00	50	297	190
2,2,4-Trimethylpentane	540-84-1	(CH3)2CHCH2C(CH3)3	114.23	98	3.90	-12	0.70	6.00	34	284	411
2,4,6-Trimethyl-1,3,5-trioxane	123-63-7	OCH(CH3)OCH(CH3) OCH(CH3)	132.16	123	4.56	27	1.30		72		235
1,3,5-Trioxane	110-88-3	OCH2OCH2OCH2	90.1	115	3.11	45	3.20	29.00	121	1,096	410
Turpentine		C10H16		149		35	0.80				254
Isovaleraldehyde	590-86-3	(CH3)2CHCH2CHO	86.13	90	2.97	-12	1.30	13.00	60		207
Vinyl acetate	108-05-4	CH3COOCH=CH2	86.09	72	3.00	-8	2.60	13.40	93	478	425
Vinylcyclohexenes (isomer not stated)	100-40-3	CH2CHC6H9	108.18	126	3.72	15	0.80		35		257
Vinylidene chloride	75-35-4	CH2=CCl2	96.94	30	3.40	-18	6.50	16.00	260	645	440
2-Vinylpyridine	100-69-6	NC(CH2=CH)CHCHCHCH	105.14	79	3.62	35	1.20		51		482
4-Vinylpyridine	100-43-6	NCHCHC(CH2=CH)CHCH	105.14	62	3.62	43	1.10		47		501
Xylenes	1330-20-7	C6H4(CH3)2	106.2	144	3.66	30	1.00	7.60	44	335	464

www.honeywellsafety.com

25

Find Quality Products Online at:

www.GlobalTestSupply.com